Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.322
Filtrar
1.
Appl Environ Microbiol ; : e0217423, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656183

RESUMO

The gut microbiota of poultry is influenced by a variety of factors, including feed, drinking water, airborne dust, and footpads, among others. Gut microbiota can affect the immune reaction and inflammation in the lungs. To investigate the effect of gut microbiota variation on lung inflammation induced by PM2.5 (fine particulate matter) in broilers, 36 Arbor Acres (AA) broilers were randomly assigned to three groups: control group (CON), PM2.5 exposure group (PM), and PM2.5 exposure plus oral antibiotics group (PMA). We used non-absorbable antibiotics (ABX: neomycin and amikacin) to modify the microbiota composition in the PMA group. The intervention was conducted from the 18th to the 28th day of age. Broilers in the PM and PMA groups were exposed to PM by a systemic exposure method from 21 to 28 days old, and the concentration of PM2.5 was controlled at 2 mg/m3. At 28 days old, the lung injury score, relative mRNA expression of inflammatory factors, T-cell differentiation, and dendritic cell function were significantly increased in the PM group compared to the CON group, and those of the PMA group were significantly decreased compared to the PM group. There were significant differences in both α and ß diversity of cecal microbiota among these three groups. Numerous bacterial genera showed significant differences in relative abundance among the three groups. In conclusion, gut microbiota could affect PM2.5-induced lung inflammation in broilers by adjusting the capacity of antigen-presenting cells to activate T-cell differentiation. IMPORTANCE: Gut microbes can influence the development of lung inflammation, and fine particulate matter collected from broiler houses can lead to lung inflammation in broilers. In this study, we explored the effect of gut microbes modified by intestinal non-absorbable antibiotics on particulate matter-induced lung inflammation. The results showed that modification in the composition of gut microbiota could alleviate lung inflammation by attenuating the ability of dendritic cells to stimulate T-cell differentiation, which provides a new way to protect lung health in poultry farms.

2.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656463

RESUMO

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Material Particulado , Folhas de Planta , Folhas de Planta/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Material Particulado/análise , Mangifera/química , Bangladesh , Psidium/química
3.
Sci Total Environ ; : 172528, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663620

RESUMO

In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38664552

RESUMO

BACKGROUND: Characterizing the spatial distribution of PM2.5 species concentrations is challenging due to the geographic sparsity of the stationary monitoring network. Recent advances have enabled valid estimation of PM2.5 species concentrations using satellite remote sensing data for use in epidemiologic studies. OBJECTIVE: In this study, we used satellite-based estimates of ambient PM2.5 species concentrations to estimate associations with birth weight and preterm birth in California. METHODS: Daily 24 h averaged ground-level PM2.5 species concentrations of organic carbon, elemental carbon, nitrate, and sulfate were estimated during 2005-2014 in California at 1 km resolution. Birth records were linked to ambient pollutant exposures based on maternal residential zip code. Linear regression and Cox regression were conducted to estimate the effect of 1 µg/m3 increases in PM2.5 species concentrations on birth weight and preterm birth. RESULTS: Analyses included 4.7 million live singleton births having a median 28 days with exposure measurements per pregnancy. In single pollutant models, the observed changes in mean birth weight (per 1 µg/m3 increase in speciated PM2.5 concentrations) were: organic carbon -3.12 g (CI: -4.71, -1.52), elemental carbon -14.20 g (CI: -18.76, -9.63), nitrate -5.51 g (CI: -6.79, -4.23), and sulfate 9.26 g (CI: 7.03, 11.49). Results from multipollutant models were less precise due to high correlation between pollutants. Associations with preterm birth were null, save for a negative association between sulfate and preterm birth (Hazard Ratio per 1 µg/m3 increase: 0.973 CI: 0.958, 0.987).

5.
Front Endocrinol (Lausanne) ; 15: 1321323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665261

RESUMO

The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Poluição do Ar/efeitos adversos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Fatores de Risco , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Fatores de Risco de Doenças Cardíacas , Glicemia/metabolismo
6.
Environ Health ; 23(1): 40, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622704

RESUMO

BACKGROUND: Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Evaluating while accounting for these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health is becoming more important. METHODS: We explored short-term exposure to air pollution on children's respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated healthcare events. The main outcome measure included individual-based address located respiratory-related healthcare visits for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for ages 0-17 from 2017-2020. We used a time-stratified, case-crossover analysis with distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 14 prior-days modified by temperature or season. RESULTS: For asthma, increases of 1 µg/m3 in PM2.5 exposure 7-13 days prior a healthcare visit date was associated with increased odds that were magnified during median to colder temperatures and winter periods. For LRTIs, 1 µg/m3 increases during 12 days of cumulative PM2.5 with peak exposure periods between 6-12 days before healthcare visit date was associated with elevated LRTI events, also heightened in median to colder temperatures but no seasonal effect was observed. For URTIs, 1 unit increases during 13 days of cumulative PM2.5 with peak exposure periods between 4-10 days prior event date was associated with greater risk for URTIs visits that were intensified during median to hotter temperatures and spring to summer periods. CONCLUSIONS: Delayed, short-term exposure increases of PM2.5 were associated with elevated odds of all three pediatric respiratory healthcare visit categories in a sparsely population area of the inter-Rocky Mountains, USA. PM2.5 in colder temperatures tended to increase instances of asthma and LRTIs, while PM2.5 during hotter periods increased URTIs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Infecções Respiratórias , Criança , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura , Estações do Ano , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Fumaça/efeitos adversos , Asma/epidemiologia , Montana/epidemiologia , Exposição Ambiental/análise
7.
Sci Total Environ ; 929: 172638, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643869

RESUMO

BACKGROUND: Although both air pollution and aging are related to the development of liver cirrhosis, the role of biological aging in association of the mixture of fine particulate matter (PM2.5) and its constituents with liver cirrhosis was unknown. METHODS: This case-control retrospective study included 100 liver cirrhosis patients and 100 control subjects matched by age and sex. The concentrations of PM2.5 and its constituents were estimated for patients using machine-learning methods. The clinical biomarkers were used to calculate biological age using the Klemera-Doubalmethod (KDM) algorithms. Individual associations of PM2.5 and its constituents or biological age with liver cirrhosis were analyzed by generalized linear models. WQS and BKMR were applied to analyze association of mixture of PM2.5 and its constituents with liver cirrhosis. The mediation effect of biological age on associations of PM2.5 and its constituents with liver cirrhosis was further explored. RESULTS: we found that each 1-unit increment in NH4+, NO3-, SO42- and biological age were related to 3.618-fold (95%CI: 1.896, 6.904), 1.880-fold (95%CI: 1.319, 2.680), 2.955-fold (95%CI: 1.656, 5.272) and 1.244-fold (95%CI: 1.093, 1.414) increased liver cirrhosis. Both WQS and BKMR models showed that the mixture of PM2.5 and its constituents was related to increased liver cirrhosis. Furthermore, the mediated proportion of biological age on associations of NH4+ and SO42- with liver cirrhosis were 14.7 % and 14.6 %, respectively. CONCLUSIONS: Biological aging may partly explain the exposure to PM2.5 and its constituents in association with increased risk for liver cirrhosis, implying that delaying the aging process may be a key step for preventing PM2.5-related liver cirrhosis risk.

8.
Front Public Health ; 12: 1388069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651122

RESUMO

Objective: Evidence regarding the effects of particulate matter (PM) pollutants on cardiovascular disease (CVD) mortality remains limited in Shanghai, China. Our objective was to thoroughly evaluate associations between PM pollutants and CVD mortality. Methods: Daily data on CVD mortality, PM (PM10 and PM2.5) pollutants, and meteorological variables in Shanghai, China were gathered from 2003 to 2020. We utilized a time-series design with the generalized additive model to assess associations between PM pollutants and CVD mortality. Additionally, we conducted stratified analyses based on sex, age, education, and seasons using the same model. Results: We found that PM pollutants had a significant association with CVD mortality during the study period. Specifically, there was a 0.29% (95%CI: 0.14, 0.44) increase in CVD mortality for every 10 µg/m3 rise in a 2-day average (lag01) concentration of PM10. A 0.28% (95% CI: 0.07, 0.49) increase in CVD mortality was associated with every 10 µg/m3 rise in PM2.5 concentration at lag01. Overall, the estimated effects of PM10 and PM2.5 were larger in the warm period compared with the cold period. Furthermore, males and the older adult exhibited greater susceptibility to PM10 and PM2.5 exposure, and individuals with lower education levels experienced more significant effects from PM10 and PM2.5 than those with higher education levels. Conclusion: Our findings suggested that PM pollutants have a substantial impact on increasing CVD mortality in Shanghai, China. Moreover, the impacts of air pollution on health may be altered by factors such as season, sex, age, and educational levels.

9.
Epigenomes ; 8(2)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38651366

RESUMO

The effects of PM2.5 on human health fluctuate greatly among various age groups, influenced by a range of physiological and immunological reactions. This paper compares the pathogenesis of the disease caused by PM2.5 in people of different ages, focusing on how children, adults, and the elderly are each susceptible to it because of differences in their bodies. Regarding children, exposure to PM2.5 is linked to many negative consequences. These factors consist of inflammation, oxidative stress, and respiratory problems, which might worsen pre-existing conditions and potentially cause neurotoxicity and developmental issues. Epigenetic changes can affect the immune system and make people more likely to get respiratory diseases. On the other hand, exposures during pregnancy can change how the cardiovascular and central nervous systems develop. In adults, the inhalation of PM2.5 is associated with a wide range of health problems. These include respiratory difficulties, reduced pulmonary function, and an increased susceptibility to illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. In addition, exposure to PM2.5 induces systemic inflammation, cardiovascular diseases, insulin resistance, and neurotoxic consequences. Evident disturbances in the immune system and cognitive function demonstrate the broad impact of PM2.5. The elderly population is prone to developing respiratory and cardiovascular difficulties, which worsen their pre-existing health issues and raise the risk of cognitive decline and neurological illnesses. Having additional medical conditions, such as peptic ulcer disease, significantly increases the likelihood of being admitted to hospital.

10.
Toxics ; 12(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38668497

RESUMO

Particulate matter of size ≤ 2.5 µm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.

11.
Toxics ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668515

RESUMO

The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.

12.
Environ Sci Pollut Res Int ; 31(18): 26480-26496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570430

RESUMO

Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Poluição do Ar/prevenção & controle , Poluentes Atmosféricos/análise , Plantas , Cidades
13.
Sci Total Environ ; 928: 172222, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588735

RESUMO

INTRODUCTION: Particulate matter (PM) is identified as one of the exacerbating and triggering factors for hypertension. Diet intake and the consumption of vitamins may potentially moderate the impact of PM on hypertension. METHODS: A 12-year longitudinal cohort study was conducted on a population in densely populated areas of China. Residual balancing with weighted methods was employed to control for time-varying and no time-varying confounding factors. Stratified Cox proportional hazards models were conducted to examine the moderating effects of diet and vitamins on the risk of hypertension with PM. RESULTS: There was a significant positive association between long-term exposure to different diameter PM and the risk of developing hypertension. The hazard ratios (HRs) for hypertension were 1.0200 (95 % CIs: 1.0147, 1.0253) for PM1, 1.0120 (95 % CIs: 1.0085, 1.0155) for PM2.5, and 1.0074 (95 % CIs, 1.0056, 1.0092) for PM10. The diet and vitamins moderated these associations, the intake of healthy foods and vitamins exhibited a significant positive moderating effect on the relationship between PM exposure and hypertension risk. Among all participants, the high intake of fruit (PM1 (HRs: 1.0102, 95 % CIs: 1.0024, 1.0179), PM2.5 (HRs: 1.0060, 95 % CIs: 1.0011, 1.0109), and PM10 (HRs: 1.0044, 95 % CIs: 1.0018, 1.0070)) and vitamin E (PM1 (HRs: 1.0143, 95 % CIs: 1.0063, 1.0223), PM2.5 (HRs:1.0179, 95 % CIs: 1.0003, 1.0166), and PM10 (HRs: 1.0042, 95 % CIs: 1.0008, 1.0075)) with lower risk of hypertension than the overall level and low intake of related foods and vitamins, exhibited a strong positive moderating effect on the relationship between PM and hypertension. Similar trends were observed for the intake of fish, root food, whole grains, eggs, fungus food, vitamin B2, B3. However, Na, meat, sugary and alcoholic exhibited opposite trends. The moderating effect of vitamin E intake was stronger than vitamin B and C. CONCLUSIONS: Diet and vitamins intake may moderate the association between PM exposure and the risk of hypertension in adults.

14.
Chemosphere ; 357: 141975, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615960

RESUMO

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.

15.
Environ Technol ; : 1-15, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626330

RESUMO

The use of mathematical and statistical models to investigate potential sources of pollutants that have been transported by air masses to a study site is important for establishing control and monitoring measures for air pollutants such as PM10 and PM2.5. During the study period, from 2018 to 2021, the concentrations of PM10 and PM2.5 recorded in Ribeirão Preto (SP, Brazil) were higher during spring and winter, with a tendency to increase the amplitude and its maximum values relative to daily averages. The source-receptor model, Potential Source Contribution Function (PSCF), was used to identify probable sources of these pollutants, and the regions known as Triângulo Mineiro and Intermediate Geographic Region of Juiz de Fora (MG, Brazil) were the main regions associated with high PSCF probability values (> 0.5) as sources of PM. These regions indicate that the possible sources of PM emissions are associated with industrial complexes and agriculture, especially coffee production.

16.
Huan Jing Ke Xue ; 45(5): 2571-2580, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629522

RESUMO

Influenced by heating, the concentration of atmospheric fine particulate matter (PM2.5) rises in autumn and winter in northern cities. In this study, Q-ACSM, AE33, and Xact 625 were used to carry out online monitoring of PM2.5 chemical components with high time resolution in Xi'an from October 25 to November 17, 2019, to analyze the characteristics of PM2.5 pollution during the transition period of the heating season. Additionally, we analyzed the sources of PM2.5 in combination with the positive matrix factorization model. The results showed that the average PM2.5 concentration during the observation period was (78.3 ± 38.5) µg·m-3, and the main chemical components were organic matter (OA), secondary inorganic ions (SIA), and dust, which accounted for 38.7%, 31.6%, and 21.2%, respectively. The average concentrations of sulfate, nitrate, and ammonium were (4.0 ± 3.1), (14.9 ± 13.7), and (5.8 ± 4.8) µg·m-3, and the average concentrations of the major metals potassium, calcium, and iron were (1.0 ± 0.4), (1.5 ± 1.1), and (1.4 ± 0.9) µg·m-3. Black carbon, chloride ions, and trace elements contributed relatively little to PM2.5 (5.7%, 1.3%, and 1.5%, respectively). In the pollution development and maintenance stage, the concentration of OA and SIA increased by 137.7% to 537.0%, whereas in the pollution dissipation stage, only the concentration of dust gradually increased. The source apportionment results showed that secondary sources, biomass burning, dust, vehicle emission, industrial emission, and coal combustion were the main sources of PM2.5 during the observation period, contributing 29.1%, 21.1%, 15.3%, 12.9%, 11.4%, and 10.2%, respectively. The contribution rate of secondary sources and biomass burning was higher in the pollution development and maintenance stage, and dust was higher in the pollution dissipation stage.

17.
Environ Res ; 252(Pt 2): 118916, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614201

RESUMO

BACKGROUND AND AIM: The increasing prevalence of precocious puberty (PP) has emerged as a significant medical and social problem worldwide. However, research on the relationship between long-term air pollution exposure and PP has been relatively limited. We thus investigated the association between long-term air pollution exposure and the onset of PP in South Korea. METHODS: We investigated a retrospective cohort using the Korea National Health Insurance Database. Six-year-old children born from 2007 to 2009 were examined (2013-2015). We included boys ≤10 years and girls aged ≤9 years who visited hospitals for early pubertal development, were diagnosed with PP per the ICD-10 (E228, E301, and E309), and received gonadotropin-releasing hormone agonist treatment. We analyzed data for boys up until 10 years old (60-month follow-up) and for girls up to 9 years old (48-month follow-up). We assessed the association between long-term air pollution exposure and the onset of PP using a Cox proportional hazard model. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) per 1 µg/m3 increase in fine particulate matter (PM2.5) and particulate matter (PM10) and per 1 ppb increase in sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3). RESULTS: This study included 1,205,784 children aged six years old between 2013 and 2015. A positive association was found between the 48-month moving average PM2.5 (HR: 1.019; 95% CI: 1.012, 1.027), PM10 (HR: 1.009; 95% CI: 1.006, 1.013), SO2 (HR: 1.037; 95% CI: 1.018, 1.055), and O3 (HR: 1.006; 95% CI: 1.001, 1.010) exposure and PP in girls but not boys. CONCLUSIONS: This study provides valuable insights into the harmful effects of air pollution during childhood and adolescence, emphasizing that air pollution is a risk factor that should be managed and reduced.

18.
China CDC Wkly ; 6(13): 249-253, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38633202

RESUMO

What is already known on this topic?: Exposure to fine particulate matter (PM2.5) was linked to endocrine hormone disruption in the reproductive system. Nonetheless, it was unclear which specific components of PM2.5 were primarily responsible for these associations. What is added by this report?: The study presented the initial epidemiological evidence that brief exposure to PM2.5 can elevate estradiol levels in postmenopausal women. Various particle components had unique effects, with water-soluble ions and specific inorganic elements like Ag, As, Cd, Hg, Ni, Sb, Se, Sn, and Tl potentially playing significant roles in increasing estradiol levels. What are the implications for public health practice?: The study established that the prevalence of air pollution, along with its specific components, has been recognized as a novel risk factor affecting the balance of sex hormones.

19.
Chemosphere ; 355: 141866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565375

RESUMO

Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 µm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Carvão Vegetal , Microalgas , Compostos Orgânicos Voláteis , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído , Poluentes Atmosféricos/análise , Monitoramento Ambiental
20.
Chemosphere ; 355: 141871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570052

RESUMO

Recycling solid waste for preparing sulfoaluminate cementitious materials (SACM) represents a promising approach for low-carbon development. There are drastic physical-chemical reactions during SACM calcination. However, there is a lack of research on the flue gas pollutants emissions from this process. Condensable particulate matter (CPM) has been found to constitute the majority of the primary PM emitted from various fuel combustion. In this study, the emission characteristics of CPM during the calcination of SACM were determined using tests in both a real-operated kiln and laboratory experiments. The mass concentration of CPM reached 96.6 mg/Nm3 and occupied 87% of total PM emission from the SACM kiln. Additionally, the mass proportion of SO42- in the CPM reached 93.8%, thus indicating that large quantities of sulfuric acid mist or SO3 were emitted. CaSO4 was one key component for the formation of main mineral ye'elimite (3CaO·3Al2O3·CaSO4), and its decomposition probably led to the high SO42- emission. Furthermore, the use of CaSO4 as a calcium source led to SO42- emission factor much higher than conventional calcium sources. Higher calcination temperature and more residence time also increased SO42- emission. The most abundant heavy metal in kiln flue gas and CPM was Zn. However, the total condensation ratio of heavy metals detected was only 40.5%. CPM particles with diameters below 2.5 µm and 4-20 µm were both clearly observed, and components such as Na2SO4 and NaCl were conformed. This work contributes to the understanding of CPM emissions and the establishment of pollutant reduction strategies for waste collaborative disposal in cement industry.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Metais Pesados , Material Particulado/análise , Poluentes Atmosféricos/análise , Resíduos Sólidos , Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...